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Abstract--The flow field induced by a translatory oscillating spherical drop immersed in another fluid is 
considered. It is assumed that the amplitude of the oscillation is small compared with the radius of the drop. 
We are concerned, for the most part, with the case of a small frequency parameter M. Of particular interest 
is the steady streaming induced both inside and outside of the drop. The problem has been solved on the 
basis of the Navier-Stokes equations by the method of matched asymptotic expansions. 

1. INTRODUCTION 

The fluid motions produced by the migration of a liquid drop through a quiescent viscous fluid 
have been the subject of numerous papers. The investigations of this phenomenon which 
occurs in a wide variety of physico-chemical processes such as extraction and atomization have 
a considerable importance. 

The translation of a fluid drop was first treated independently by Rybczynski (1911) and 
Hadamard (1911) under the assumption that the drop remained exactly spherical. Since 

interfacial tension acting at the junction between the two immisible fluids tends to maintain a 
spherical shape against the shearing stresses which are inclined to deform it, the investigations 
of the shape of a viscous drop settling through a fluid appear to be the most detailed treatment 
of a free surface. This was attempted by Saito (1913), but in view of an error in his work, 
Taylor & Acrivos (1964) reexamined this problem. Some investigators introduce a simplification 
of the boundary conditions by assuming that one side of the free surface is bounded by a fluid 

of extremely small viscosity. Various models (Levich 1959, Scriven 1960) to describe the 
rheology of interfaces have been proposed. Many have stressed the importance of the intense 
local pressures and temperatures. Others, (Lamb 1945, Chandrasekhar 1961) have given 
attention to effects such as shape-mode resonances and their associated violent mechanical 
deformations at the bubble surface. Nybord (1953) has called attention to still another effect 
which may explain the action of bubbles in certain instances. This is the presence of small-scale 

acoustic streaming generated by bubble-scattered sound waves. It has been experimentally 
established that when sound sources oscillate in a viscous fluid, a steady streaming motion will 
be induced. Such steady motion is called acoustic streaming and arises from the interaction of 
viscosity with the nonlinear inertia terms. Elder (1959) examined experimentally the steady 
streaming in the neighbourhood of a small bubble attached to a vibrating piston. 

In a recent paper Davidson & Riley (1971) have considered the flow induced by an isolated 
spherical bubble which performs translational harmonic oscillations relative to the liquid in 
which it is embedded. Their attention was focused upon the microstreaming which is induced. 

In the present paper an examination of the flow field induced by a translatory oscillating 
fluid drop immersed in another fluid is undertaken. Of particular interest is the steady streaming 
induced both inside and outside the drop. We assume that the fluids are immiscible and the 
particle is sufficiently small that the liquid drop maintains a fixed spherical shape. So we neglect 
the effects such as shape-mode resonances and their associated violent mechanical deformation 
at the globulan surface. We also do not consider the effects of gravity and transport across the 
interface due to static diffusion or diffusion associated with the microstreaming. 
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2. FORMULATION OF THE PROBLEM 

Consider a spherical fluid drop with radius a. Adopt spherical polar coordinates at the center 
of the globule with the axis 0z pointing upstream parallel to the transverse vibration with speed 
U~ cos cot at infinity. Dimensionless variables will be employed throughout the analysis, and 
physical parameters pertaining to the interior of the drop will be distinguished from the 
corresponding exterior parameters by a caret. With U~ as a typical velocity, to -~ as a typical 
time, a as a geometrical length and v and ~ as the kinematic viscosities of the internal and 
external media respectively there are several length scales associated with this problem. From 

these length scales we can construct the following dimensionless parameters which characterize 
the motion: 

U ~at~ coa 2 toa 2 
Re -U~ap /~e= ~ , ,  IMI 2= , I~r12= 

/*' ' v ~ ' 

U~c 
toa 

We shall be concerned entirely with the situation in which the amplitude of the oscillation is 
small compared with a, so that 

e ' ~ l  and Re~IMI  2. 

The governing equations of motion in terms of the stream functions X and )~ have the 

following form: 

ax +l a 1 4  e [ ~  O(x'D2x) 2 2 # . . ~_~X)J + (D2x) 
IMI 2D x= a(r,l~) +7"  D x((1---(-S'~ Or r -~¢ [l] 

for the exterior region 1 ~< r < oo and 

K 4 A [1 a(,~,D2,O~_~.D2~( /z a,~ I ~ ) ]  
ylM] 2 o  X = e  r ~"  o(r, lz) ( I - - i -Z-~ '~ r+r  ' +0--~(O2'~) [21 

for the region inside the globule. 

_ 0 2 (1- /z  2) O 2 
Here # = cos O, D 2 = ~ ' 1 -  7 f f ' ~ '  

U~a  
Re = 

It 

is the Reynolds number and M, K and 3' are respectively the frequency parameter, the ratio of 
the viscosity of the interior to the exterior fluid and the ratio of the density of the interior to 

that of the exterior fluid. 
The radial and transverse velocity components u and v are related to X by 

1 a__.xx 1 ox 
U = T s i n 0 . a 0 ,  v =  rsin0"--ar" [3] 

The boundary condition satisfied by X as r-+ oo is 

l eir. X ~ -  r2( 1 - #2) [4] 

The boundary conditions at the interface are: 
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(1) Zero values of the normal velocity both inside and outside of the globule 

, f=0 ,  X=0  at r-- 1. 

(2) Continuity of tangential velocity across the interface, whereupon 

a~_ ax at r = l .  
Or Or 

(3) Continuity of shear stresses of the two fluids across the interface 

,[a/l .~)] =. L~\7" a-~JJ.=,' 
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[5] 

[6] 

[71 

These conditions hold when fluids are immiscible, the surface tension is constant, the 
surface viscosity effects are negligible and axial symmetry is postulated. It should be remarked 
at this point that in [4] there is another condition requiring the balance of normal stresses when 
the drop changes its form and size. One can use this condition to determine the shape of the 
fluid drop as a function of Weber number We, K, 3' and Re. Uniqueness of the solution for small 
Re is ensured by the additional conditions that the velocity be a finite continuous function of 
position at the center r = 0: 

^ 

=-~=0 at r=l. [81 

For the regions r t> 1 and r ~< 1 we seek the solutions respectively of the form 

X -'~ X 1 ' {  ~ X 2 ~  " " " , [91 

,~ =~l+e~2+'". [10l 

3. CONSTRUCTION OF THE SOLUTION 

Substituting [9] and [10] in [1] and [2] respectively and equating the terms free of E on both 
sides we have 

and 

ILMI'' ~ (DZxI) = D4XI 

IMI2" 31"x ~ (D2~I) = D4~,. 

[ll] 

[121 

The boundary conditions for Xl and ~l are [4]-[8]. We assume that 

and 

X, = f(r, ]MI)(I - 2 )  e t  

~, = [(r,  [M[)(1 - g2) e ' .  

Then from [11] and [12] we find 

.1+ b i l l  )eU, b2/ l  )e_U, [(r, ]MI) = alrZ + a2 - M + + M 
r - - ~ r  - ~ r  ' [13] 
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l /~1 
i(r, ,M, )=  ti,r2 + ,2. r+ ~ .  ~( ~- 4~- M) e~'+ M~" ~(1 + ~/~ M) e-~'' [14] 

where a~, b~, &,/~ (i = 1, 2) are constants. 
Applying boundary conditions [4]-[8] we obtain the following exact solutions of [11] and 

[12]: 

3 1 -~(1 + M) 1 {1-(1 1 • r2 - l + ~ - ~ [ ( r  + M )  e -M¢r-I) • + M)[(-3 + 3 ~ M  f(r, [MI) = 

.}/3/2 3 
- ~  M2)eMV(v/~)+ (3 + 3~/~M+~M2) e-MV(v/')]:[(6K-6~/-~M+ 3yMZ--~---~KM 

-9+9~/fM-3~Tr M2-3M+ 3~-~M2--~M3)eUV'v'~'+(-6K-6~/-~M-3yM 2 

= +9+9 M+3YM2+3M+3 MZ+ZM3 e-MX/(~/') [13'] 
3v/K - - K  K - - / )  K / 

/(r, [M[,= {-~,1 + M,[(I  - ~/~- M)e v''/')M- ( l+  ~/~ M)e-V(v/')Mlr2 

+~(l+ M)[( 1 -  ~/K "]~  - ( r  + 4 ~  M) e-V"/')M']}: [14'] 

:{[6K-6V~yrM+3yM2-~M3-9+9~/~M-3~Yr MZ-3M 
-- .312 

+ 3~f-~ MZ- ~ M']eUVtv/"+ [-6K-6~-~M- 3yM2-~KM3 

+9+ 9~/~-M+ 3ZM2+K 3M+ 3~/~- M2+ --?K M3]elMX/(v/")}" 

We expect X2 to contain a term independent of ~ in addition to the oscillatory one: 

x2(r, I~, [M[, z) = X2(')(r, tt, IMI) + x2(")(r, ~, IMI, r) [15] 

where the superscript (s) denotes steady and (u) unsteady. 
The reason that a steady streaming may be induced by a periodic motion of the liquid 

drop is the fact that the pertubation equations O(e) contain forcing terms ~cos2z = 
~(1 + cos 2~'). The equations for the unsteady and steady parts of X2 are 

where 

iMl~uX2 - ~ u x 2  ' = ~ t  a(r,#) +2D2x"Lx'J 
1 1 [ O ( X  I, D2XI)  -](s) 

~-~O'xz("=2--?[ ~ v2D2x"Lx'] 

L= ~_..__~ ,9+1 a 
(1-#2)'~rr r" 0-##" 

[16a] 

[16b] 

The complicated form both of the solution [13'] and the equations [16a, b] has precluded the 
possibility of a solution for X2 in closed form for all values of M. That is why furthermore we 
shall suppose that IMI ~ 1. Now we can expand the perturbation functions in [9] and [10] as a 
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series in powers of M. For X~ and ~l we have 

"4;'[ X I = 2r 2_ 3x +_____22 K e~ , + [M]( t~ 2) (3x + 2) l- 3K + 2 r 
x + l  r + ~-~--~ • • ~ '+ - i~  L - - - T -  r + ~r 

• •  2~, 2x i(~'+~r/2) r 
+ ( K + l ) r  2 e - t , + ~ m _ l m l t ~ - g  l e  / . . . .  1008(K + 1) 3 ] o~tar + 2)(K + l)2r 3 -  56(3r + 2)2(r + I)r 2 

+ [12~/(K + 1) + 17(3r + 2)(9K2 + 5 + lZx)]r - [12y(x + I) + 7(3K + 2)(3xz + 2r + 3)]~} 

)(i = (I --U2)(F 2 -  r 4) ~, IM[(I --/X2)(3K +2)(r  2 -  r4)e -('+"Iv) (l-o2)lMI2e"*+=m 
4(K + 1) e 12(r + I) 2 + 1008K(K + 1) 3 

× "[9y(K + l)2r 6 -- 2(3x + 2)(3yx + 3y + 17K)r4 + (9y + 30yK + 21y2r + 78K2+ 56K)r2]. 

[17] 

In this diffuse case ([M I ,~ 1) for the stream function X one can develop solutions in an "inner" 
(Stokes) region of scale O(a) and a much larger "outer"  (Oseen) region of scale O(aIMD. For 

the outer expansions we assume 

= ~ l + e ~ 2 + "  • • [19] 

The inner[9] and the outer [19] solutions must match in the overlapped region. We concentrate 

first on the solution in the inner region. 
Since [MI ~ I we write 

X2 = X2o+ IMIx2, + IMI=x=. [20] 

If we substitute [20] into [16] and equate coefficients of like powers of IMI we have 

D 4 t ~ 2 0 =  0 ;  D4~b21 = 0 .  

It may be verified a posteriori, using matching of the inner and outer solutions, that 

are the only possible solutions. 
According to [15] we write 

(~)20 = 0 ,  ~21  = 0  

(])22 = .&(O)d. e2ir. 

The functions ~b2°2 ) (j -- 0, 2) must satisfy the equation 

D4t~202 )=  3 p ' ( 1 - g 2 ) . ( 3 K + 2 ) ~ [ 2 r - - -  
8 ( K + I )  

The solution of this equation has the form 

f j -2 3K+2 I" 2 tb~ = ~a, j+ a j r  3 + a3Jr s+ a4r + 

where a?(i = 1, 2, 3, 4; j = 0, 1) are constants, 

Q.(I~) = f ) l  P. (x)  dx 

and P.  is the Legendre polynomial of degree n. 

MF Vol. 4, No. 2--F 

3 x + 2  r 1] 
;~-~ + ~ - i "  P " 

r .1 (3x +2) r l lQ2(/~ ) 
2-~ 7 D ' 2(r-+ 1) 

[21] 

[22] 

[23] 

[18] 
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In seeking an expansion that holds for large r, it is necessary to find transformation of 
variables which will allow expansions well behaved as r-~oo. The proper coordinate trans- 
formation for this problem is p = rM. If this transformation is introduced into [3] the result is 

U = - -  
M 2 3 X M 2 0 X 

p2sinO 00' v =  p sin 0 Op 

Since u and v should not vanish as M ~ 0, the variable q' = M2X is introduced to remove the 
dependence of tMI from the velocities. The equation for the stream function q' in the outer 
region is 

where 

Re r M 0(*, ~ 2 , ) t . ~  M, d h  F Z ¢ , ] =  i~,hF ' [24] 

02 ~ 02 z =  . _ 0 + L . Z  
1- -#  2 Op p Op. 

The first-order solution qrt as M--,0 is obtained to be 

_p 1 
~,  :2p12(1- ~2) e" + [~/l(3x + 2) (1-  pf l ) [ ( l  + 1) e 2 ( r +  1) - p ] e  i('+'~/4) 

[M[2( 3K+ 2)2 i ' l -  #2 ) [ (1+  1) e-O - 1 ]  e, '+~/2)+... 
+ 6(K + 1) 2 ~" p j  " 

We suppose that 

and 

~2 = F20 + IMIF2, + IMI2F22 + " "  

(0) ]g,(2)/~ e2iT. F22 = F22 (p, #) + ,22 w,/~) 

[25] 

we obtain 

a/=O, ( j=0 ,  2; I =  1, 2, 3, 4); 

As in [20] one can show that F2o = F2j = 0. For F~ ), j = 0, 2 we have 

~4F2~)-jM2F~)-(3k+2) P 1 + p + ~ ) .  [26] - 2 ( r  + 1) Q2(/~)e- ( 3 3 

The resulting solutions for F, (°) and F~ ) are 

F(O)_[_,, + B 2 o + ( 3 r + 2 ) [ ,  3 ~.~) ] 
22-L 2O 7 2(-;TgL '+ + e-" 

F(2) _[B22+A22[l+ 3 +3~o_v(2p ,  3 x + 2 [ ,  3.3~e-P]Q2<#).  [271 22 - ° 
L p2 \ X/2p 202] 

The matching procedure is based on the idea that X and q' are different forms of the same 
function. 

By means of the matching condition 

lira [X~ + ~1'2 + ' "  "] = lira ~-~ ~OI + ~-~ ~02 + . . . .  
'r-..~ p-.~ 
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(3x + 2). A22 = (3:< + 2) B2o = 3 (3K + 2). B22 = ~" (3:< + 2) 
A2°= 4(r + 1) ' 2(:< + 1 ~ - 3  ; - 2 "  (:< + 1 - ~  ' ( r  + 1--'-~-T" 

Therefore 

0 =  _p2Q~(/z)e,~ IMIQ~(~)(3K +2)1-(1 + 1 )e  -p -(:<+I) L\p -1] e"~+'4, 
lm l2 ,3 :<+2 ,  2 I)e,,,+,,/2i _ , 3 x + 2 )  ( l + p + ~ )  3 ' x + l )  2 Q , , / ~ , [ ( / +  + K e ~ [ ~ - ~ +  3 3 e_ . ]Q2( ,  ) 

+ ~ e ~ L ~  + -  (3:<+2) 1-3 ( l + p x  '/~3 +~p2,13 "~e_V,2,)_(l+3+ 3)e_ , l  p p / .s +"" 

x = -  2 (K+i )  (S~Ti3 

_IMIQ,(~)  . _ _  
3 

+ IMI2QI(~) 
504(x + 1) 3 

+ [12y(K + 1) 

Re (3:<+2)[K(5:<+4)+ :<(5K+6) I r2 
16 (K+I )  ~ l~r - -~-~  ~ ' ~ +  

(3 :<+2)[  3K+2 2~ ] 
( K + I )  2 2 . r +  + (:< + 1 ) r  2 e I('+~/4) 

63(3K + 2)(:< + l)2r 3- 56(3K + 2)2(:< + l)r: 

+ 14(3:< + 2)(9x 2 + 12r + 5)] r - [123,(:< + 1) + 7(3x + 2)(3:< 2 + 2r + 3)]~} e/''+'/2' 

3~<+2 x ~} 
2(x + 1 ~ )  r 2(r + 1) Qz(~)(i + e21")+" " " 

Similarly, for the region inside the drop, we seek ~2 in the form 

where 
 ;2o+ IMI4;2, + IMI2 ; 22 + ' '  

(~22 ----- f" (0) ~L ~ (2) e21r. ~22  T ~22  

[281 

Straight forward but tedious computations, which will not be reported here, yield 

t • 2 0  = (~21 = 0 ;  

Hence for the ~ we have 

~(0) .~. (2) 
22 = ~22  = Q 2 ( p . )  

(4:< + 5)(3:< + 2) (r s _ r3). 
160(r + 1) 3 

4 ,~ M QI(#) (3K + 2) r 4) e.~+~/~)_ IMI2QI(~) ,~_ Ql(/Z) . ( r  2 _ r ) e  + 6 ' " ( r 2 -  -2(:< + 1) (:< + ] ~  504(:< + I)3K 

× [93/(:< + I)2r 6 - 2(3x + 2)(33,:< + 33, + 17x)r 7 + (93, + 303,:< + 213,2r + 78r 2 + 56x)r 2] e i('+~j2I 

+ Re"' " "(3:< + 2)(4K + 5) (r s _ r3)( 1 + e:i~) + . . .  [29] 
V21,p,; 160(r + 1) 3 

As a matter of fact, it is interesting to note that for the limiting case of small gas bubbles 
(K-+0, y-+0) we get Davidson & Riley's (1971) solution for the region r-> l, whereas for very 
viscous drops (:<-) ~) 

, ol 
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X = Q~Ix)[2r2-3r+~lei~-IMlQ,(ix)[-~r+~--~+r2]e"'+"4' 

3 3 . IMl2o,( iz ,{3r3_8r2+6r_l}ei , .+.m+ Re.~_~{~+~r r2 ~r .---ff-- 

;Tr}O2(Ix)( i  + e2i')+ .. .. 

,~=0, 

[321 

The significance of the viscosity of the drop material to the steady state streaming which 
accompanies the oscillation one can see from the formulae: 

(3K+2)rl  3 + 

(3K + 2) r 
2(K + l~ r 2(d¥  l) 

X2m_ (3K+2)[ 'K(5K+4)+K(5K+6) I r 2 

where 

^ o) (4r +5)(3K + 2 ) , r ~  
)2 = 1 6 - ~  ~ -r3)Q2(tz)' 

It is of interest to calculate the drag on the drop. We have 

drag 2n fo" Fo = a - ~ ' ~  =- ~ [pr~lr=l cos O- prolr=, sin O] sin O dO 

Ou 
p,e = - p + 2-~r , 

[33] 

~JO2(/z), [34] 

[35] 

[36] 

I Ou &v V - .  - -  + . . . .  [37] 
P,e = r 3r Or r ' 

By manipulating the radial and tangential momentum equations, we can derive an expression 

for the pressure 

Using [36]-[38] we get 

( 3 K + 2 ) [  (3K+2) ] e". 
p = P o - ~  I+3(--"~'~M cos0 [381 

2~r ( 3 E + 2 ) [ I + ( 3 K + 2 ) , , ]  ,~ 
F°=R--e" (K+I)  I_ 3 ( ~ M J  e [39] 

This expression is (in some sense) a generalization of the Taylor & Acrivos' (1964) formula 
[10a] for the case of an oscillating fluid drop immersed in another fluid. 
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